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Prior-to-Failure Extension of Flaws Under
Monotonic and Pulsating Loadings

by

Michael P. Wnuk

(Abstract)

An equation governing the prior to failure crack propagation is proposed.

For a rate-sensitive solid containing two-dimensional crack and subject to the -

tensile mode of fracture the differential equations are integrated numerically

for the loads increasing monotonically in time. The resulting integral curves

a = a(k) and k = £(t), i.e. load vs. crack length and length vs. time, indicate

that the growth of cracks in the subcritical range is strongly rate dependent.

The fatigue growth, viewed as a sequence of slow growth periods, is simu-

lated on EAI 380 analogue computer. The fourth power law proposed by Paris is

confirmed only within certain range of high-cycle fatigue propagation and for a

rate-insensitive solid. Otherwise, that is for a more pronounced rate dependency

induced by viscosity of a solid and/or in the proximity of the final instability

point the growth is markedly enhanced. For sufficiently small ratios of the

applied stress intensity range AK to the toughness Kc, the suggested fatigue

growth law consists of two terms, i.e.

d + cf'( AK 4  1K2 Z, = rK2 /8y 2

( ) + Cf f =(dn 12 Kc KC c

First term is the familiar Paris expression while the second one accounts for the

rate-dependent contribution; f denotes frequency and Y is the yield strength.
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Prior-to-Failure Extension of Flaws Under
Monotonic and Pulsating Loadings

Part I Basic equations. Monotonic loads.

The catastrophic fracture is often preceded by a quasi-static extension of

an initial defect which is too small to be detected. The process of slow propa-

gation occurs at loads below the critical level, and it connot be described in the

framework of Griffith-Irwin theory of fracture. In fact the differential equation

which governs the subcritical growth in a quasi-brittle solid, [6]

M(a,£,da/dt) + G(a,k) = Gc (1.1)

implies possible extension of a pre-existing flaw at incredibly small initial flaw-

sizes (or, equivalently, at very low stress levels). It is only at the end of the

slow propagation stage, when the "slow growth operato' M(J)vanishes,that the

Irwin criticality condition is satisfied, i.e.

G(a,k) = Gc (1.2)

or for the linear range of fracture mechanics

K(ao,) = K c  (1.2a)

where G denotes the energy release rate, Gc is the specific fracture energy, K(o,£)

denotes the stress intensity factor and Kc is the fracture toughness. During an

infinitesimal growth the applied stress a and the corresponding crack length Z

undergo the change

(a,£) - (a + da, Z + d) (1.3)

This is associated with the plastic.energy dissipation absorbed within the end-section

of a progressing crack (Z < x < a) i.e.

U = (6U)Z + (6U) (1.4)
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in where
a

U)4Y do S u(x,a,k) dx
S= const dZ 9a Z

(1.4a)
a

(6U) = const 4Y u(tip) + 2Y S u(x,a,k) dx

Here u(x,a,k) denotes the displacement of a Dugdale crack evaluated within the

process zone. The first expression in eqs. (4) is identified as twice the slow

growth operator, while the second one is twice the energy release rate. Require-

ment that the energy balance is satisfied at every instant of the slow propagation

stage leads to the governing equation (1); spell out as "Michael plus George equals

critical (or crazy) George". The resulting differential equation is valid for

the subcritical range of loads

ao< a< , or

(1.5)

Ko < K(a,k) < K

in which ao (or Ko ) is the propagation threshold, while o c (or Kc) is Irwin's critical

threshold identified here with the transition to fast propagation. For many ductile

solids with well-defined flat "yield shelf" the ratio of the initiation to rapid

propagation threshold, Ko/Kc, can be estimated as

SY) (plane stress) (1.6)
K, E 30

where Y is the yield strength and E is the Young modulus. For strain-hardening

materials and under high triaxial constraints the above ratio may approach unity,

which implies a neglegible amount of slow growth.
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Examples of application.

For a two-dimensional Dugdale crack equation (1) reduces to

1 C2 d [Bsec 2S - tanS] + c[StanO + logcosS] = 1 (1.7)
2 d

while for a penny-shaped crack with an associated Dugdale-type plastic zone it reads

S + = 1 (1.8)
3 (1-12)3/2 dr V

Here, the applied load a and the crack length Z are normalized as follows

- 8 in(1.7) rrK 2

= T = (,) = C( c) (1.9)
YA in(l.8) 8y 2

For small scale yielding range the above expressions can be expanded into a

McLaurin series at 8 0 (or A 0), yielding

dB 3 2-182
d- -- 2 plane crack
dC 2 B

(1.10)

dX 3 2-C 2
d- =  2-C3 , penny-shaped

Neither of these two equations could have been integrated in a closed form, but

as we proceed to show, the numerical (IBM-360) or analogue computer (EAI 380)

integration allows one to derive certain simplified rules to be used for prediction

of the subcritical growth under

(a) monotonic loadings,

(b) pulsating loadings.

Within the linear domain of fracture mechanics, when yielding is confined to a

narrow zone small compared with crack length (qaY,£41,) an important generalization



of eqs. (10) is possible. In such a representation a viscous behavior, in addition

to the small scale yielding already represented by equations (10) is accounted for. In

this range it is sufficient [G] to replace the time-independent K-factor, K(o,Z),

by the "effective" time-dependent K-factor, namely

Keff = K(a,k) (A/i) (1.11)

where * denotes the normalized creep compliance I(t)/I(o), i is the growth rate

and A denotes the intrinsic opening distance (a material constant). With (11) the

equation governing the slow propagation within the subcritical range becomes

2 C/)dB 2-8 2

(3 8 + C/) -- plane crack

(1.12)

2 d_ 2-cA 2
(- ~ + C/A) -- , penny-shaped crack

where C characterizes the rate-sensitivity of the solid

C = [I]t=O (a/,*) , or

(1.13)

C = A[]lt=0 (gy 2 /7K 2c)

The constant A has to be supplied by the experiment.

Two extreme cases result from equations (12) straight forward:

(a) rate insensitive material, in which all the dissipation can be ascribed to

plastic time-independent deformation. Then C - 0, and eqs. (12) reduces to (10).

(b) highly rate sensitive solid, say a linear visco-elastic matrix containing a

crack with a neglegible amount of plasticity present around crack tips. Then eqs.

(12) degenerate into



(e1) dB 2

(C/IA) d 2

or

dc = C82/2
dt

(1.15)
d__ CCX 2 /2
dt

It is readily observed that the last two expressions have one common form

K2
d_ C * K (1.16)

dt K2 ( ,Z)

This can be integrated for a prescribed load history = B(t), yielding the length

of the extending crack as a function of time, C = C(t). Examples of such integration

are given in the second part of this report, see Fig. 11.

Numerical Examples

Let us illustrate now how the above equations work. Consider a central crack

of half length , roughly ten times greater than the size of the associated plastic

zone R*. The initial crack length is thus

, = (10)£ = (10) (c) (1.17)

and suppose that both the fracture toughness Kc and yield strength Y are known. We

want to evaluate the load at which this crack becomes unstable, say ac. As the

first approximation let us apply Irwin's criterion for failure

K(o,k) = Kc  (1.18)

For a central crack contained in a large plate the above equation reads

02(nT) = Kc2 (1.19)
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or, in a dimensionless form,

82C = 2 (1.20)

With C defined by eq. (17), we obtain

C= 10 , a = Y = 0.4 4 7 2 Y (1.21)

The Griffith-Irwin criterion, therefore, predicts no growth for all loads 8 less

than 0.4472 and the rapid propagation occuring at 8c = 0.4472 and 4c = 10. No

slow growth can be accounted for.

Assume now that the solid is quasi-brittle and the propagation threshold

Ko is about a quarter of the transition threshold Kc, say Ko = 0.224 K .

Since

0 _ Ko (1.22)
T= (i.22)8c  c

we have the starting value of the applied load

Bo = Bc(Ko/Kc) = 0.10 (1.23)

This together with Co = 10 provides the initial condition for equations (10) and (12).

Numerical integration with the rate sensitivity Cassumed to be zero, yields the

following values of the crack length and the load at instability, say 4f and Bf:

Cf = 11.4446
(1.24)

Bf = 0.41793

Thus we conclude that the catastrophic fracture is preceded by a slow extension of

magnitude

Ak = (Cf - Co) Z*

(1.25)
A9 = (1.44)(TK2/8y 2 )

The final instability occurs at the load

of = (0.418)Y

This is 6.5% less than the load predicted by the Irwin criterion, ac = (0.447)Y.
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For larger initial crack lengths and non-zero sensitivity C the discrepancy

becomes much more pronounced. Some data substantiating this point are gathered in

Table I, while the corresponding graphs are shown in Figs. la and lb.

Table I Instability preceded by the slow growth vs. Irwins instability (Numbers are

generated by eq. (12) and IBM 360).

Initial Length o - 10 Co = 100 Co = 1000

Irwin's Instabilit 
= 0 . 4 4 7 2 ,c = 10 ,c = 0.1414, cc = 100 ,c = 0.0447, Ec = 1000

Sensitivity to
Loading Rate C/A Cf Bf Cf 8f Cf 8f
Ratio

0 11.4446 .41793 102.739 .13952 1004.06 .04463

(cf, Bf) denotes
.1 11.4856 .41721 102.786 .13950 1004.08 .04463

the set of final
crack length and 1 11.8188 .41147 102.994 .13935 1004.18 .04463
applied load at
which transition 10 14.1074 .37665 104.979 .13802 1005.26 .04460
to rapid propa-
gation takes 10C 24.0228 .28854 117.827 .13028 1014.48 .04440
place.

The amount of slow growth which precedes the catastrophic fracture is distinctly

dependent on the initial crack length and ductility of the solid. We have

.K2 )
Ao = f(o,C) g- (1.26)



8

or, with Kc replaced by Y(76)1/2 (Ef /y)(+N)/2

2 y N + I

AZ = f(Co,C) - 6(Ef/y) , N l (1.27)

The analytic form of the function f(CoF)is not known,but for a given Co and C

f(Co,C) can be read out from Fig. 3. The other essential material parameters are

the structural size 6 (~z*) and the ratio of strain at failure Ef to the yield

strain Ey (=Y/E).

It is obvious that the deviation from Irwin's theory becomes more pronounced

for lower toughness threshold levels, for larger initial crack lengths, for enhanced

ductility and for materials which are rate sensitive. All the factors mentioned

contribute to the inelastic behavior of a solid.

Part II Fatigue in Rate Dependent Solids.

Fatigue crack propagation may be viewed as a sequence of extensions (or steps)

of "slow growth" type, each of which occurs while the stress increases during the

loading cycle. Therefore the amount of growth produced during one cycle can be

computed from eqs. (1.12) by simply integrating both sides of the equation over

the load range min < 8 < 8max and regarding the current crack length roughly

constant within the single cycle. This latter assumption may not be true for the

final stages of fatigue life, where one observes a substantial acceleration of the

growth pace, but it certainly is all right for the major portion of the high cycle

fatigue life. From eq. (12) we have

2 2max 3d C max 2dS(dC)per cycle 3 + - (2.1)3 -- t >2- 8(.
min min

hence
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dn log 2-cB2 min m ax)
dn max

(2.2)

+ C min-max + I log (2+max/i) (2-Bmin 2)

+72T (2-Bmax2) (2+amin/ C

If the propagation threshold Bo exceeds the minimum stress within a cycle

the lower limit of integration in eq. (2.1) should be replaced by Bo . This

may considerably alter the propagation rate, see Fig. 2.

For the initial stage of high cycle fatigue progressing at stress intensity

remote from the criticality point, the product C82 in the denominator of the

integrand of (2.1) can be neglected vs. 2, and we have

S2max 13 d + C max
(dC) 12 m 3 da + C B2 dB (2.3)

per cycle 2 d (2.3)

hence

d _ 2 4 _ 4f C__ _
dn= 1 C2 [max ] + max-o] (2.4)

where </> denotes the average rate within a cycle.
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The range AB = max - min does not have to coincide with the integration limits

Bo < < A , if we allow for the threshold level = Bo to lie above the minimum

stress in the loading cycle, see Fig. 2.

Fig. 2 The location of the threshold level 8o predetermines the rate of growth.

load (a) load (b)

P-aK 
V

S STAGNANT ZONE

crack length crack length

In particular, when one restricts the attention to a zero-to-maximum stress cycle

(Bmin = 0), and assumes zero threshold 8o = 0, eq. (2.4) simplifies as follows

d _ 1 2 (gy C (a) 3  (2.5)dn 12 6 (

The first term here can be readily identified with the Paris expression for fatigue

crack growth rate, while the second term represents an additional contribution due

to the rate sensitivity of a solid. The first term accounts for crack extension in

ont
a quasi-brittle solid with no time-effects, and thus it involves the range of K-factor

The second term decreases when the rate of loading is increased; it does depend on

the frequency. The average rate of loading within a single cycle can be related to

the frequency as follows

<(B = 2fAB (2.6)



With this and with (A )2C replaced by 2(AK/Kc)2 eq. (2.6) becomes

di _ (AK)4 C* f- AK 2  (2.7)
dn 3 Kc 12 Kc

The first term alone gives the well known Paris law*, while the second one tends to

increase the pace of growth, at least within the frequency range in which the mater-

ial is rate dependent (i.e. for f-1 comparable to the characteristic relaxation

time of a solid).

Computer Simulation of Fatigue Growth.

As ther is no closed form solution to the equation governing crack growth in the

subcritical range

_ - 2-2 (2.8)
dc C$2( 2 CB + C/)

3

We employ the analogue computer technique. The program (see Fig. 4c) has been

arranged in such a way that the integration which starts at the initial point (to, 8o)

proceeds up to the point of maximum load in the cycle, then interrupts and reverses

to the new 'nitial" position

Co + AC , ao

where At denotes the amount of growth within a single cycle. The binary counter

recorded the total number of cycles before the critical point was reached. This point

is distinguished by zero slope d6/dt, and it is clearly visible on all photographs

* If the range Ak = AK/K c is not very small, the Paris law ought to be replaced by

di_ =_2 {log 1 (Ak)2 } (2.7a)
dn 3 1-(Ak)
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which depict the final stage of fatigue life. Figures 5 and 6 show an increase of

the propagation rate due the time-sensitivity

C = A/e . , = K2/8y 2  (2.9)

of a viscoelastic-plastic solid. In the limit of C+0 and within the high-cycle

range one recovers the fourth power law valid for rate-independent quasi-brittle

solid.

Fig. 7 shows three runs at

0.1 < B < 0.14 , AB = 0.04

0.1 < B < 0.17 , AB = 0.07

0.1 < B < 0.20 , A = 0.10

thus demonstrating shift in the location of the critical point and the change of

the rate of growth due to varying stress range. Total numbers of cycles to failure

are gathered in Table II. Each run consists of two parts:

1 < C 10

10 < C _100

and then the total number of counts (cycles) is obtained by summing up N(1,10) and

N(10,100). The results are repeatable within the accuracy of about 8%.

A somewhat different test is pictured in Fig. 8, where four runs are shown, all

at the same range AB = 0.01 but at different levels of the mean stress (see also

Table III). The dependence of NTOT on the stress range, the mean stress and rate

sensitivity is summarized in graphs shown in Fig 9 and 10.

Finally, Miner's cumulative damage law is tested in a series of runs performed
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at varying stress levels. Miner's prediction

Ni = number of loading cycles imposed

(2.10) - N 1 at mean stress level Ti
- i1

Nif Nif - number of cycles which would lead

to failure if the level Fi was
maintained throughout the test.

turns out to be fairly well satisfied (see Table IV). The agreement deteriorates

a little for larger values of the sensitivity parameter and for greater discrepancies

between two stress levels used in the program. This trend appears to conform with

the deviations from eq. (2.10) reported by investigators who tested Miner's law

in the experimental way.

The next test pertains to the limit case of highly rate-sensitive solid in

which viscous dissipation is dominant over the plastic work. Then equation (2.8)

simplifies to

K2  K2

dc = C Kc or d£ = C£, K c  (2.11)
dt K2(p,;) dt K2 (,)

which in turn can be written as

£ m2 (t)x

(2.12)

0 m 2(t)So x-m ( t )

Equation (a) above governs the growth of a central crack propagating through a

uniformly loaded plate; then

K(a,k) = a(fZ)2 (a)



14

while the equation (b) describes the growth induced by the pair of point forces P

applied at the center of the crack surface; then

K(a,k) = P/(TZ) (b)

Both c,(or P) and k vary in time. Function x(t) = £(t)/Y o is subject to determination,

while the load m(t) = o(t)/ac (or m = P(t)/Pc) is given. Both equations (2.12) are

then programmed for an analogue computer, see Figs. 4a and 4b, and the resulting

integral curves x = x(t) for 3 various loading regimes are shown in Fig. 11. It

appears that the pulsating loads (siusoidal and trapezoidal) produce more rapid

growth in the initial stage of propagation than the constant load maintained at the

level coinciding with the mean stress within the cycle. Yet another test, not shown

here, proved that the randomly pulsating tensile stress produced most severe increase

of the flaw size.
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Appendix. Equation of Motion in the Subcritical Range

The rate of work done in separating two surfaces

W= TiuidS Ti = traction vector
(A.1)

AS ui = displacement vector

can be computed from a Dugdale-type model of a plastic zone at the crack tip

embedded in a linear viscoelastic solid. If the process zone extends between

x = Z and x = a, Y denotes the yield stress and*

a = stress applied

u = u(x,a(a),2(t)) 2k = crack length (A.2)

t = time

is the displacement of the crack face, then (A.1) takes the form

a

= 4 Y u(x,a,Z)dx

Substituting the rate. u

* du a Bua da
U 6t a -a a d

into (A.3) and requiring that the energy flow a is converted into the surface

energy

SA = 4iy = 2iG , Gc = specific fracture energy (A.5)
as defined by Irwin

we obtain
a

2Y [(-) + dx = G (A.6)
a c

* Note that in the subcritical range load 6 is treated as a function of crack
length. The function = (e) is a priori unknown and will be subject to determination.
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This can be further reduced to (Wnuk [6]):

a

2Y [-a+ -0] u(x,a,t)dx + 2Yu(tip) = G

which indeed is the equation governing the slow growth in the subcritical

range. For a rate-dependent solid we shall have to restrict the validity of the

above governing equation to small scale yielding, since only then the viscoelastic

displacement u(x,a,k) and its increment 6u can be expressed as a product of the

elastic solution to a given boundary value problem uo = uo(x,a,k) and the "creep

function" p = (t), as follows (Wnuk [6]):

u(x,a,Z) = uo(x,o,Z) * V(6t = A/2) ,A = material constant
(A.8)

6u(x,a,Z) = 6uo(x,o,Z) * (6t) + uo 6 = 6uO(x,a,z) * (6t)

Note that the argument of the creep function i has been replaced by the time

interval 6t equal roughly the time used by the crack tip to traverse its own

plastic zone. The essential assumptions made here are that the time interval 6t = A/k

is sufficiently small and that the function i does not vary rapidly within the in-

terval 6t. This of course implies small scale yielding (A - 0) range, while the

rate of loading should be restricted to the "slow" one. These conditions are

satisfied when the "inherent opening distance" A is much smaller than the character-

istic length t* = 7rK2/8Y2 , and when am increment of load Ao associated with time

equal to the representative relaxation time is negligible. With these assumptions

equation (A.7) simplifies considerably, and it reads

a

2Yd ~ uO(x,a,k)dx + 2Yuo(tip) = Gc (A.9)

Here only the knowledge of elastic solution is implied, and thus both terms in eq.
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(A.9) can be identified with the linear fracture mechanics entities, namely

a

2Y ia 3 uO(x,o,k)dx = M = slow growth operator (A.10)

and

2Yuo(tip) = G = Irwin's energy release rate (A.11)

The first term M has been recently introduced into the theory of subcritical propa-

gation (reference 6), and may be thought of as a measure of inelastic behavior of

a solid. The other term is a well-known Irwin's energy release rate G or Rice's

path independent integral (or the derivative of the strain energy G = -(aU/la).

It may be readily verified that the Griffith-Irwin instability point is included

in the equation (A.9), but it results from it only

i) if the solid is perfectly elastic, then M E 0 and i E 1.

ii) when the final point in the succession of meta-stable states

do
(i.e. for a slowly growing crack) is attained, as then = 0, and again one re-

covers Irwin's equation G = Gc, provided that the matrix is rate-independent. How-

ever, if the rate-dependence is there, the simplest form of eq. of motion (A.9)

follows for a crack growing under a sustained constant load (do = 0), and it is

G(o,k) = G Ic(A/i) (A.12)

We shall briefly illustrate how the above equations, in particular (A.9) and

(A.12) work. To do so we shall expand the function i(6t) in the Taylor series

around the point 6t = 0 (implying smallness of the interval 6t = A/2, which is

satisfied for i > 0, that is for a crack which already moves. Applied load, there-

fore, must be above the threshold value). We have

(st - 0) = 1 + [dl(6t)] 6t + ... (A.13)
d(6t)t=6t=0
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ordenoting the derivative [df(t)/dt]t=0 B and recalling that

A a do
6t d (A.14)

d dk

we get

(6t) = 1 + B A do (A.15)
T dT

for an arbitrary linear viscoelastic solid. Finally computing M (see reference 6)

we reduce the governing equation (A.9) to the form

S rE aG A do dl _ GcG(a,9,) 1 + [1 + B d-- = (A.16)
1+B

a dt

in where n equals unity for plane stress and 1-v2 for plane strain.

The above equation can be linearized if we restrict our attention to the near-

do 2  do 3critical states only and assume that the powers (-d) and (- ) are negligible
dT9 d.Z

do
vs. d-. Then (A.16) reduces to

d9

1 + [ 2 + B] d = Gc/G(a,Z) (A.17)E ad (A.17)

Consider a plane crack contained in a large plate subject to uniform tension, then

G(a,k) = na 2 (rZ)/E (a) (A.18)

Second configuration of interest is that of a plane crack opened by a pair of

point forces applied directly to the crack faces, then

G(o,k) = nP2 /(r)E (b) (A.19)

For these two configurations eq. (A.17) takes the form

2 .C/ ) d -Ca2

3 dc u2

(A.20)

S+ d-- = Z 2 (b)
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where the dimensionless load B and the dimensionless crack length C are defined

as follows

L 1 for (a)
2Y TK 2

8 =  b = /*, £ = ---- ; both cases

P- for (b)
2YZ*

Two limit cases which can be treated somewhat easier than the general case are

worth mentioning here, and these are

1) = 0, constant load fracture (static fatigue), for which the equation of

motion can be integrated in a closed form.

2) In the other limiting case (; - -, fast loading or time-insensitive matrix) the

governing equation simplifies again, since now C/ = 0. Fig:.I a and b show the

family of integral curves resulting from eq. (A.20a). They include two extremes

of possible behavior:

a) fast loading, cf. the steepest curve;

b) sustained load (zero rate); cf. the horizontal line.

This clearly demonstrates that, all other factors being fixed, the rate of loading

and the initial crack length determine the critical stress at which failure will

occur. In a similar way the delay time, which elapses between load application

and the final instability, is affected by the rate-sensitivity of the solid.



TABLE II

Recorded numbers of cycles to failure at various stress

ranges L and sensitivities C. The first row gives

the number of cycles between = 1 and 3 = 10, the
second one refers to 104 < 100, while the

third row gives the total numbers of
cycles to failure.

= .1 RATE SENSITIVITY

C=1.5 1.0 0.5 0

5587 7876 13248 47082

.03 .13 2084 2415 2884 3978

7673 10291 16132 51060

3771 5328 8944 30999

.04 .14 1365 1585 1902 2482

5146 6913 10846 33481

2713 3846 6457 21491

.05 .15 937 1088 1311 1713

3650 4934 7768 23204

2019 2890 4861 17966

.06 .16 676 782 943 1245

2695 3672 5804 19211

1563 2250 3728 11978

.07 .17 498 568 -694 920

2061 2818 4422 12898

1237 1775 2994 9390

.08 .18 363 424 - 520 689

1600 2199 3514 10079

998 1426 2420 7480

.09 .19 280 323 408 525

1278 1749 2828 8005

822 1168 1992 6062

218 255 309 409
.1 .20

1040 1423 2301 6471



TABLE III

Recorded numbers of cycles to failure at various mean stresses

nme, and sensitivities C. The first row gives the number

of cycles between] =1 and =10, the second one

refers to 10<I < 100, while the third row
gives the total numbers of cycles

to failure.

SA .01

Stress level C = 0.0 C = 1 C = 2

107886 19642 10187

.12 P 4 .13 8742 5541 4192

TOTAL 116628 25183 14379

85306 16539 8400

.13 5 4 .14 6989 4454 3344
TOTAL 92295 20993 11744

70533 13819 7112

.14 < p .15 5553 3567 2625

TOTAL 76086 17386 9737

58475 11460 6362

.15 0 .16 4350 2794 2072

TOTAL 62825 14254 8434

49769 9862 5349

.16 -~ .17 3406 2176 1655

TOTAL 53175 12038 7004

42351 8579 4732

.17 ( 3 .18 2794 1899 1388
TOTRL 45145 10478 6120

36367 7444 4164

.18 4 ~ .19 2263 1492 1157

TOTAL 38630 8936 5321

32669 6779 3888

.19 < , .20 1875 1278 983

TPTAL 34544 8057 4871



TABLE IV

Testing the cumulative damage law on the EAI380 analogue 
computer.

Note that the deviation A increases for greater

sensitivities and discrepancies in

the applied stress level.

SminP 'ax C 0 A1 A C 2

.19 - .20 = .946 6779 .841 3888 - .798

34544 8057 4871 0
cJ o0 0

8742 o 4454 O 3344- .292 o
.12 - .13 8742 .075 .2204 = .292 c

116628 o 20993 0 11744+
toal 1.2 + +
total =1.021 total = 1.061 total = 1.090

.18 - .19 36367 941 7444 833 4 = .783

18 - .19 38630 8936 5321
9 4454 O 3344 . o

.13 - .14 6989 .076 4 4 .212 = .285
92295 o 20993 o 11744 o

total =1.017 total = 1.045 + total = 1.068 +

.17 - .18 42351 .938 8579 .819 4732 .773

45145 10478 6120

.14 - .15 5553 .073 3567 .205 o 2625 .270 o
76086 + 17386 + 9737

total = 1.011 total = 1.024 total = 1.043

.16 - .17 49769 .936 9862 .819 5349 .764
53175 , 12038 7004

.15 - .16 4350 069 2794 .196 o = .246 o
62825 + 14254 + 8434

total = 1.005 total = 1.015 total 1.010

o 12780

2 34544 8057 487

R 92295 -- 11744

S0

4 14 ; , (FDA I, 1 2 I

total = 0.989 total = 0.976 total = 0.937

.12 - .13 107886 925 19642 .780 10187 .708
116628 25183 14379

1875 c 1278 .159 0

total = 0.979 total = 0.939 total = 0.910

.13 - .14 85306 = .924 16539 .788 8400 .715
92295 20993 11744 10

-18 -. 19 2263 = 059 1492 - 1157 0
.18.1 .236

38630 18936 -45321 217

total = 0.983 total = 0.955 total = 0.932

.14 - .15 70533 = .927 13819 = .795 7112 = .730
76086 17386 9737

.17 - .18 2794 = 062 5 1899 = .181 * 1388 = .227
45145 10478 6120

total = 0.989 total = 0.976 total = 0.957

.15 - .1611460 = .804 .754
62825 14254 8434

3406 2176 1 1655
.16 - .17 = .064 0 T .181 0 - = .236 c,

total= 0.995 total =0.985 total= 0.990
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Fig.lb. Subcritical growth induced by a monotonic load at three different
rate sensitivities; simulated by the analogue computer EAI 380.
Note that the increased internal friction (C)enhances the amount
of slow growth. Arrows indicate points of terminal instability.
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FIG. 3 EFFECT OF THE INITIAL FLAW SIZE () AND THE RATE SENSITIVITY (C)

ON THE AMOUNT OF SLOW GROWTH PRECEDING CATASTROPHIC FAILURE
(ACCORDING TO DATA GENERATED ON EAI 380 ANALOGUE COMPUTOR)
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Fig. 4a. Analog computer diagram for integrating equation C / -
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Fig. 4b. Analog computer diagram for integrating equation X - C Xm ( ,
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Fig.4c Analogue computer diagram for integrating equation

under a pulsating loading regime.
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Fig. 5a. Effect of the rate sensitivity C = C/( on the fatigue crack growth.
Increased C is equivalent to enhanced sensitivity or/and lower frequency.

Here: C = 0, initial crack length o= 1
stress range 0.1 < P < 0.3
number of cycles not shown = 169
total number of cycles = 426

LIZ
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(b) C = 0.5, initial crack length o = 1 (c) C = 2.5, initial crack length o= 1
stress range 0.1 : ( < 0.3 stress range 0.1 (5 < 0.3

number of cycles not shown = 160 number of cycles not shown = 92

total number of cycles = 300 total number of cycles = 132

Fig.5b & c. Effect of rate sensitivity C = C/< on the fatigue crack,growth.

Increased C is equivalent to enhanced sensitivity or/and lower frequency.

U,
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.1 4 6.2

2'? 31 33 35 37 319 qI 3 45 ---

Fig.6 Final stage of fatigue life simulated by the EAI 380 analogue computer.
Note the enhanced rate of growth at larger value of sensitivity C.



C = 1.5

(a)

10 30 50

(b) 0.1 0.17

10 30 50 7

(c) 0.1 o ( 0.14

to 30 50 70 q 0

Fig.7 Effect of stress range p on the fatigue life (see Table II for the

measured numbers of cycles to failure).
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Fig. 7d. Photograph from the oscilloscope screen of runs 7a, 7b
and 7c combined.
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C= 1

0.19 $ 0.20

0.17 0.18

0.15 0.16

0.13 0.14

10 .~0 50 700

Fig.8 Effect of the mean stress on the fatigue life (see Table III
for the measured numbers of cycles to failure).
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FIG. 9 EFFECT OF THE MEAN STRESS (PMEA) AND RATE SENSITIVITY (Q) ON THE FATIGUE LIFE
(ACCORDING TO DATA GENERATED ON EAI 380 ANALOGUE COMPUTOR)
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FIG 10. EFFECT OF THE STRESS RANGE (Ag) AND RATE SENSITIVITY (C) ON THE FATIGUE LIFE
(ACCORDING TO DATA GENERATED ON EAI 380 ANALOGUE COMPUTOR)
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Fig. 11 Subcritical growth of a crack under (a) uniform tensile field, (b) point

a

forces applied directly to crack surface; (c) shows loads imposed.
reduced load, crack length and time are: m = e(t)/6 ... . x = I/,-- , (0)
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